viernes, 25 de abril de 2014

Ley de los Senos y Cosenos para resolver triangulos Oblicuos




Triángulos oblicuángulos


Para resolver triángulos oblicuángulos vamos a utilizar los teoremas del seno y del coseno.
Dependiendo de los elementos que conozcamos, nos encontramos con cuatro tipos de resolución de triángulos oblicuángulos:

1º. Conociendo un lado y dos ángulos adyacentes a él


Discusión
Discusión
Discusión
Triángulo

De un triángulo sabemos que: a = 6 m, B = 45° y C = 105°. Calcula los restantes elementos.
triángulo
Triángulos
Triángulos
Triángulos

2º. Conociendo dos lados y el ángulo comprendido

Discusión
Discusión
Discusión
Triángulo

De un triángulo sabemos que: a = 10 m, b = 7 m y C = 30°. Calcula los restantes elementos.
triángulo
triángulos
triángulos
triángulos
triángulos

3º Conociendo dos lados y un ángulo opuesto


Discusión
sen B > 1. No hay solución
sen B = 1 Triángulo rectángulo
sen B < 1. Una o dos soluciones
Triángulo

Supongamos que tenemos a, b y A; al aplicar el teorema de los senos puede suceder:

1. sen B > 1. No hay solución.

Resuelve el triángulo de datos: A = 30°, a = 3 m y b = 8 m.
triángulo
Resolución
Como el seno de un ángulo nunca puede ser mayor que 1, el problema no tiene solución. La figura muestra la imposibilidad de que exista el triángulo planteado.

2. sen B = 1. Solución única: triángulo rectángulo

Resuelve el triángulo de datos: A = 30°, a = 3 m y b = 6 m.
solución



solución
triángulo
solución
solución

3. sen B < 1. Una o dos soluciones

Resuelve el triángulo de datos: A = 60°, a = 8 m y b = 4 m.
solución
solución
solución
solución
solución

Resuelve el triángulo de datos: A = 30°, a = 3 m y b = 4 m.
solución
solución
solución
solución
solución
solución

No hay comentarios:

Publicar un comentario